RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences.

نویسندگان

  • W Dunn
  • P Trang
  • U Khan
  • J Zhu
  • F Liu
چکیده

External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. In this study, DNA-based EGS molecules were chemically synthesized to target the mRNA coding for the protease of human cytomegalovirus (HCMV). The EGS molecules efficiently directed human RNase P to cleave the target mRNA sequence in vitro. When EGSs were exogenously administered into HCMV-infected human foreskin fibroblasts, a reduction of about 80-90% in the expression level of the protease and a reduction of about 300-fold in HCMV growth were observed in the cells that were treated with a functional EGS, but not in cells that were not treated with the EGS or with a "disabled" EGS carrying nucleotide mutations that precluded RNase P recognition. Moreover, packaging of the viral DNA genome into the capsid was blocked in the cells treated with the functional EGS. These results indicate that HCMV protease is essential for viral DNA encapsidation. Moreover, our study provides direct evidence that exogenous administration of a DNA-based EGS can be used as a therapeutic approach for inhibiting gene expression and replication of a human virus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective inhibition of human cytomegalovirus gene expression by DNA-based external guide sequences.

To investigate whether a 12 nucleotide DNA-based miniEGSs can silence the expression of human cytomegalovirus (HCMV) UL49 gene efficiently, A HeLa cell line stably expressing UL49 gene was constructed and the putative miniEGSs (UL49-miniEGSs) were assayed in the stable cell line. Quantitative RT-PCR and western blot results showed a reduction of 67% in UL49 expression level in HeLa cells that w...

متن کامل

Engineered external guide sequences are highly effective in inducing RNase P for inhibition of gene expression and replication of human cytomegalovirus

External guide sequences (EGSs), which are RNA molecules derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. Using an in vitro selection procedure, we have previously generated EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the overl...

متن کامل

RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins

An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity...

متن کامل

Inhibition of Murine Cytomegalovirus Infection in Animals by RNase P-Associated External Guide Sequences

External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures...

متن کامل

Effective inhibition of cytomegalovirus infection by external guide sequences in mice.

Ribonuclease P complexed with external guide sequence (EGS) bound to mRNA represents a unique nucleic acid-based gene interference approach for modulation of gene expression. Compared with other strategies, such as RNA interference, the EGS-based technology is unique because a custom-designed EGS molecule can hybridize with any mRNA and recruit intracellular ribonuclease P for specific degradat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 26  شماره 

صفحات  -

تاریخ انتشار 2001